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ABSTRACT   

In order for Kepler to achieve its required <20 PPM photometric precision for magnitude 12 and brighter stars, 
instrument-induced variations in the CCD readout bias pattern (our "2D black image"), which are either fixed or slowly 
varying in time, must be identified and the corresponding pixels either corrected or removed from further data 
processing. The two principle sources of these readout bias variations are crosstalk between the 84 science CCDs and the 
4 fine guidance sensor (FGS) CCDs and a high frequency amplifier oscillation on <40% of the CCD readout channels. 
The crosstalk produces a synchronous pattern in the 2D black image with time-variation observed in <10% of individual 
pixel bias histories. We will describe a method of removing the crosstalk signal using continuously-collected data from 
masked and over-clocked image regions (our "collateral data"), and occasionally-collected full-frame images and 
reverse-clocked readout signals. We use this same set to detect regions affected by the oscillating amplifiers. The 
oscillations manifest as time-varying moiré pattern and rolling bands in the affected channels. Because this effect 
reduces the performance in only a small fraction of the array at any given time, we have developed an approach for 
flagging suspect data. The flags will provide the necessary means to resolve any potential ambiguity between 
instrument-induced variations and real photometric variations in a target time series. We will also evaluate the 
effectiveness of these techniques using flight data from background and selected target pixels.  
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1. INTRODUCTION  
Launched on March 6, 2009, the 3 1/2 year Kepler Mission1 is to detect transiting exoplanets and determine the 
frequency of Earth-size planets in the habitable zones of sun-like stars. Previously, authors have described mission 
design and overall performance2, photometer design3,4, in-flight instrument performance5,8, and the overall data 
processing scheme6. Caldwell et al.5 describes several nonstationary image artifacts that are present in Kepler data and 
discusses their impact on photometric precision. This paper describes a method for recognizing and removing or flagging 
some of these artifacts. Specifically, the content includes a derivation of the need to develop this capability, a description 
of the methods employed and a summary of the results from applying it to a short period of flight data. Prior to this we 
provide a brief introduction to the instrument and data modes. 

The Kepler focal plane consists of 84 separate science readout channels (identified as module#.output#) and four fine 
guidance sensor (FGS) channels, as shown in Figure 1a, all of which are read out synchronously. Each channel has 
several regions available to collect calibration, or “collateral” data (Figure 1b). There are two sets of columns of virtual 
pixels: (1) 12 columns of bias-only pixels resulting from 12 leading pixels in the serial register (“leading black”), and (2) 
a 20 column serial over-scan region (“trailing black”). There are also two sets of rows of collateral pixels: (1) the first 20 
rows, which are covered by an aluminum mask (“masked smear”), and (2) a 26 row parallel over-scan region (“virtual 
smear”). During science data collection, a coadded sum of specified columns of the trailing black and rows of both the 
masked and virtual smear are stored at each cadence for each channel. To enable correction for some of the artifacts a 
specific set of artifact removal pixels (ARPs), as illustrated in Figure 1c, are collected along with the science data. 
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Science data are available at either short cadence (~1 minute) for 512 targets, or long cadence (~30 minutes) for 170,000 
targets. All science data are collected with an integration time of 6.02 s with pixels read out at a 3 MHz clock rate. In 
science collection mode, the full single integration CCD frames are coadded together. Then at the end of the short and 
long cadence period pre-specified pixels for each target are selected from the coadd, processed, and stored on board. Due 
to data storage and transmission limitations, only about 6% of the 96 million pixels are stored for eventual transmission 
to the ground. 

Kepler's shutterless operation precludes standard dark frames. Instead, reverse-clocking of the CCDs permits us to 
measure the bias level throughout the image in the absence of sky signal. Also, a full frame image (FFI) mode permits 
collection of all the pixels in the focal plane. FFIs are used to examine detector properties, verify pointing, and verify the 
target aperture definitions. Reverse-clocked data and FFIs are taken periodically throughout the mission.7  

 
Figure 1. a) Focal plane with designations for modules 1-25, and outputs 1-4 for each module. Module.outputs 1.1, 
5.1, 20.1 and 25.1 are fine guidance sensors (FGS).  b) Identification of collateral regions associated with each 
output channel. c) Plots indicating the locations of artifact removal pixels (ARPs) in the leading and trailing black 
regions. These pixels are collected during each long cadence. 

2. OBJECTIVES  
To illuminate the motivation for this activity we begin with a brief description of the artifacts of concern. We identify the 
Kepler noise floor and relate this to the pattern noise levels or bias variability induced by the artifacts, defining an 
acceptable level for the bias variations. Our flagging and removal objectives are based on these levels. 

2.1  Description of artifacts 

Ground testing uncovered several instrumental artifacts, each of which was investigated to understand the cause, impact, 
and cost to fix or mitigate. These artifacts were extensively characterized on the ground and then again during 
commissioning. These investigations determined that several did not require mitigation. The existing data processing 
pipeline6, or the algorithms described herein handle those with the largest impact. Those relevant to this paper are briefly 
described below and illustrated in Figure 2.  

FGS Clocking Cross Talk.  Cross talk from the FGS clocks to the science CCD video signals injects a complex pattern 
into the bias image of every science channel with an amplitude up to 20 DN read−1.3  Because the FGS and science 
CCDs share the same master clock, the pattern is spatially fixed; however, the amplitude of the cross talk is dependent 
on the temperature of the Local Detector Electronics (LDE). The cross talk has three distinct components based on the 
state of the FGS CCDs as the science pixel is read out (see Figure 2a): FGS CCD frame transfer, parallel transfer, and 
serial transfer. Approximately 20% of targets have at least one of the parallel or frame-transfer cross talk pixels in their 
aperture. Without mitigation, the cross talk introduces a small time-varying bias into a target’s flux time series as the 
LDE temperature changes. 



 
 

 
 

 

 
Figure 2. Illustrative description of pattern noise sources (left) and effects on Kepler images (right).  a) The FGS 
pixels are read out synchronously with the science pixels but the difference in size of the two sensors combined 
with the changes in characteristics of the clocking signals during the parallel and frame transfer intervals produces 
b) a complex pattern of thermally varying pixels at specific locations across the image. c) An aliased high 
frequency signal is highly sensitive to LDE component temperature changes due to normal operational warm-up. 
These produce a smoothly varying frequency change with row. Note that a 0.1% change in the source frequency 
can produce an aliased frequency change from DC to Nyquist (1.5 MHz) in the readout.  One result is d) a moiré 
pattern with row-dependent frequency (left). The trace of a single row with time shows drift in the frequency 
(right).  The other result is e) bands which occur when the aliased frequency crosses 0 Hz, extend over all columns 
(left). The time-evolution of a single column shows rolling band in response to temperature changes (right). Plots 
are meant to show typical qualitative behavior for affected channels, so scales and data sources are suppressed. 
For reference b) shows flight data from output 20.2, c) shows ground test data from output 14.4, d) shows ground 
test data from output 9.3 and e) shows ground test data from 13.4. 

High-frequency Oscillations.  A temperature-sensitive amplifier oscillation at >1 GHz was detected in some CCD video 
channels during the artifact investigation. Investigation suggests that this signal may originate is from the AD8021 
operational amplifiers used extensively in the video signal chain, which may show subtle layout-dependent instability 
when used at low gains. The oscillation’s frequency range, rate of change, and pattern among the channels matched 
closely those characteristics in the dark images, strongly suggesting that the artifact is a moiré pattern (MPD) generated 
by sampling the high-frequency oscillation at the 3MHz serial pixel clocking rate. Since the characteristic source 
frequency drifts with time and temperature of the electronic components by as much as 500 kHz/°C, the signal from a 
given pixel in a series of dark images has a time varying signature. This signature may be highly correlated with 
neighboring pixels and yet poorly correlated with slightly more distant pixels. When the oscillation frequency is a 



 
 

 
 

 

harmonic of the serial clocking frequency, a DC shift occurs producing a horizontal band offset from the mean bias-level 
in the image. As the frequency drifts with temperature, the point on the image where this DC shift occurs moves up or 
down from sample-to-sample, producing a rolling band (RBA). 

Forty-six of the 84 readout channels have never exhibited moiré pattern behavior and an additional 9 channels have thus 
far not exhibited this behavior at a detectable level in flight. Ten channels have shown rolling bands. While the moiré 
amplitude per pixel in the remaining channels is significant, its affect on our ability to detect small planets depends on 
frequency, sum within a target aperture, and variations over time-scales of interest to transit detection. Based on the first 
33.5 days of data from science operations, the instrument is meeting the 6-hour precision requirement across the focal 
plane for the quietest 30% of stars.9 The two worst moiré channels, 9.2 and 17.2, exhibit a ~20% increase in 6-hour noise 
over the focal plane average at 12th magnitude, based on the standard deviation of 6-hour binned flux time series. Such 
an increase is small compared with the factor of 1.5 spread in the distribution of dwarf star precision at 12th magnitude.9 

For completeness, we briefly mention several other instrumental features in the Kepler data which are either accounted 
for in the current calibration scheme6 or are not currently observed to be variable enough to adversely affect Kepler 
science. The list includes: 1) Time-varying low-spatial-frequency characteristics, whereby the row-profile of the 2D-
black image tends to evolve slowly with time. 2) LDE Undershoot, whereby star-like images induce a signal-dependent 
trailing undershoot in the video output, and 3) Start-of-line Ringing (SOLR), whereby a transient signal is initiated at the 
onset of serial clocking of each row. The variations at low spatial frequency are corrected in the current calibration using 
a cadence-by-cadence fit to the trailing black collateral data. We use a similar fit in the algorithm described in section 3 
which also accounts for FGS crosstalk and LDE undershoot. This algorithm is designed to replace the current calibration 
method in a future pipeline release. An undershoot correction is also included in the current calibration pipeline with a 
model including up to 20 pixels when they are available in the target table. We have observed, and continue to expect the 
start-of-line ringing to be sufficiently stable over time to avoid photometric precision degradation. 

Finally, scene dependent artifacts arise in two possible ways: 1) as a consequence of the sensitivity of the oscillating 
LDE component to temperature, the thermal transient introduced during readout by the signal from a bright star causes 
additional localized changes in the detected moiré pattern amplitude and frequency, and 2) time variability of pixels 
detecting bright stars, especially at the ends of saturated column segments, the LDE undershoot from beyond 20 pixels 
or from undetected pixels causes time variability in the black level. Section 5.3 discusses how we will address these in 
future development if we find that they warrant high enough priority relative to other factors influencing photometric 
precision. 

2.2 Kepler's noise floor 

The Kepler design placed the noise floor for detecting stellar variation at a level that enables detection of earth sized 
planets in habitable orbits around 12th magnitude stars. A remotely observed earth would produce an 84 ppm decrement 
during a 12 hr solar transit, and to ensure high detection efficiency for similar pairs of objects, a 1σ noise level of 20 
ppm for 6.5 hour periods was allocated.  Artifact-induced changes in bias level significantly exceeding 20 ppm on this 
time scale or longer could be confused with the signals resulting from stellar variability. Therefore, the objective of this 
work is to correct bias variations to below the noise floor where possible, and to detect and flag them where correction is 
not possible.  Table 1 summarizes implications for the acquired signal levels in electrons and DN. 

Table 1.  Quantities used to define the level at which artifacts begin to affect Kepler science. 

Stellar magnitude (G-type star) 11 12 13 
Detected in-aperture electrons in 6.5 hrs, aperture sizes are 
typical for the magnitude 

1.12e+10 in 25 
pixel aperture 

4.47e+09 in 16 
pixel aperture 

1.79e+09 in 9 
pixel aperture 

Earth-equivalent transit decrement, 84 ppm (e-) 939000 376000 150000 

Allocated noise including shot noise, 20 ppm for 12th mag. (e-) 168000 89400 51900 

Bias change matching allocated noise level in aperture in 6.5 hr 
(e- read−1 pixel−1) 1.9 1.6 1.7 

Bias in DN, nominal 100 e-/DN scale factor (DN read−1 pixel−1) 0.019 0.016 0.017 
The characteristics of pattern noise that justify the additional attention are that it may be spatially correlated and 
temporally correlated, whereas ordinary white noise or other broadband types of noise are likely to be less so.  For an 



 
 

 
 

 

aperture with 16 pixels, observed for a period of 6.5 hours (13 long cadences) noise will grow in the sum at a rate  

€ 

16 ×13 ≈14  times more slowly than a spatially and temporally correlated bias change. On the other hand, pattern 
characteristics vary widely, so only a small fraction of the integrated observing time 

€ 

×  field-of-view product is likely to 
be subjected to a reduction in sensitivity or increased likelihood of false detection. In this paper we use the term "source 
coverage" to identify the product of time 

€ 

×  field-of-view. 

2.3 Acceptable bias variations 

It is clear that space and time correlated signals below 0.02 DN/read over time intervals shorter than 6.5 hours would be 
difficult to distinguish from noise and therefore have little scientific impact.  Typically, the acceptable level of bias 
variation would be constrained by detectability to several sigma above the noise level. In this case however, we are able 
to leverage from the similar behavior of pixels acquired at a specific FGS clocking interval or pixels in an extended 
region of a given readout channel to measure bias variations at several times below the noise level.  Since it is no more 
difficult to observe effects at the noise level than several times above, we simply round the 0.016 DN read−1 pixel−1 to 
0.02 DN read−1 pixel−1 which is equivalent to 25 ppm of the 6.5 hr. signal from a 12th magnitude star.  Thresholds for 
correction and flagging of artifact-induced bias variations are based on limiting changes to 0.02 DN read−1 pixel−1. 

2.4 Removal and flagging objectives 

FGS crosstalk is clearly detectable in data from collateral regions collected during every long cadence. The multiple 
examples of pixels collected during each FGS parallel and frame clocking interval typically indicate a repeating pattern 
which shows little or no change over one science readout.  It is therefore possible to measure these bias changes on a 
cadence-by-cadence basis and have high confidence that the science pixels are subject to the same effects.  The objective 
for the FGS algorithms is therefore to remove the FGS crosstalk signal to the level of 0.02 DN read−1 pixel−1. 

Collateral data from smear regions also provides a way to measure the amplitude and frequency of moiré pattern on a 
cadence-by-cadence basis at the beginning and end of each readout interval.  Relating this to the row-by-row amplitude 
and frequency of moiré pattern in the difference between FFIs provides an indirect means of estimating the 
characteristics of moiré pattern at any readout location and time.  Changes in trailing black collateral provide a similar 
means to detect and characterize rolling bands.  For these however, confidence in the exact estimate of the artifact-
induced bias does not match that of FGS corrections.  Such efforts are complicated significantly by complex phase 
variations and scene-induced changes in readout component temperatures, which lead to short-term changes in the 
oscillating frequencies and local shifts in the moiré patterns.  For these reasons, our objectives with respect to MPD and 
RBA are to flag regions of the focal plane and times when collateral data indicates that the amplitude of an effect is 
greater than 0.02 DN read−1 pixel−1. The impact of a specific moiré pattern amplitude on the peak-to-peak variation in 
an aperture is reduced by a factor 

€ 

2sinπfn /πfn , where n is aperture width in pixels, and f is the moiré spatial frequency.  
This makes it difficult to generalize the severity of the moiré pattern in a flagged region independent of the target 
apertures.  Our approach is to flag data based on amplitude and provide localized severity information, such as 
frequency, which permits more precise evaluation of the impact on a given target. 

3. METHODS  
The process developed to mitigate the effects of the pattern noise sources on Kepler science includes the elements and 
data products shown in figure 3. The overall architecture takes advantage of the results of cadence-by-cadence spatial 
fitting, removing FGS crosstalk and low-spatial frequency variations from fit residuals, which would otherwise 
complicate detection of the rolling bands and moiré pattern. 

3.1 Spatial fitting 

The spatial fitting algorithm is designed to extract information about the time-varying parts of the Kepler data stream 
using pixel and collateral data from each cadence or FFI. We derive the information in the form of fit coefficients and 
uncertainties based on a model of the observed behavior of each pixel.  Let 
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XRC  represent the raw black level value in 
DN at row R and column C, and let Z represent the zero offset introduced to prevent negative values. Then we assume, 
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XRC − Z = X0 + fRC + gC +WRC
F +WRC

P +URC  
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where,
X0 is a constant
fRC  is the row dependent part, (C only distinguishes leading and trailing black)
gC  is the column dependent part
WRC

F  is the FGS frame crosstalk dependent part

WRC
P  is the FGS parallel crosstalk dependent part

URC  is the undershoot dependent part

 

Each of these components is defined in the Appendix in terms of linear coefficients.  The fit values of all the 
coefficients, coefficient errors, residuals and associated statistics are the data products of this algorithm. 

 
Figure 3. Architecture diagram showing prototype elements as boxes and data product flow as arrows. 

The process includes initialization and fitting segments. Initialization of FGS clock states as a function of pixel location, 
selection of scene dependent exclusion zones, initialization of model components are parts of the initialization segment. 
Fitting the average of specified cadences and fitting each of a series of single cadences comprise the fitting segment. 

The FGS frame and parallel crosstalk components occur in repeating patterns defined by the parallel and frame clocking 
intervals of the of the FGS.  The term "row" applies to one of 1070 rows of a science channel image, each 1132 pixels 
long.  The actual number of 3MHz clock cycles in a row is 1455, so 323 clock cycles don't result in pixels (science 
parallel clocking).  There are 5- 311370 clock-cycle FGS frames for every science frame, so an overall pattern repeats 
every 214 rows. In terms of the continuous clock stream, the frame crosstalk signal repeats every 16 pixels for 8450 
clock cycles. It then flat-lines to a constant offset for 109 clock cycles followed by a short 3-clock cycle waveform. The 
parallel crosstalk signal repeats every 566 clock cycles with the first 16 cycles having the strongest crosstalk signal 
followed by a another 12-24 cycles which exhibit low-level "ringing". The remainder of the 566 may be treated as 
constant except the last one which shows variability in some channels (cycles 17-566 are the serial clocking intervals of 
the FGS frame readout).  The parallel pattern begins at FGS clock cycle 8563 with parallel cycle number 3 of 566 and 
continues modulo 566 through the entire FGS clock cycle range to 311370. 

To serve the fitting algorithm we assign the FGS-frame clock sequence numbers 1-16 to the repeating frame pattern, the 
value 17 to the 109 following pixels and 18-20 to the interval-ending feature.  The remainder of the 311370 are assigned 
the value 0.  Similarly, we assign the FGS-parallel clock sequence numbers 1-566 to the repeating parallel pattern 
starting with value 3 assigned to the 8563rd cycle, and all preceding cycles are assigned the value 0.  

After stacking the 5 FGS frames and chopping off the excess 323 unobserved columns, this provides a pair of mappings 
from (row, column) to FGS-frame clock sequence number, and (row, column) to FGS-parallel clock sequence number.  
We fit a spatial model in which each pixel's black level is a separable function of row, column, FGS-frame clock 
sequence number (frame-CSN), and FGS-parallel clock sequence number (parallel-CSN). The algorithm allows fitting 



 
 

 
 

 

any combinations of frame-CSN and parallel-CSN, but we have limited the parallel-CSN modeling range to pixels 1-29 
and 565-66.  The range 30-564 does not appear to contain time varying features. The frame-CSN pixels 18-20 are only 
measured in reversed-clocked cadence data, and are monitored but assumed constant. 

Regions are excluded from the fits because they are potentially affected by moiré pattern drift changes or undershoot 
produced by signals from bright stars near the trailing black.  These appear to be caused by temperature changes induced 
by the signals from bright stars on the readout circuit.  For brightest stars, the signal may bleed over many rows and 
therefore the scene dependent region extends over many rows. The algorithm used for selection of scene dependent 
exclusion zones uses FFI images, and depend on choices of: a) a signal threshold in DN read-1, above which a pixel may 
cause a scene-dependent artifact, b) a column threshold, above which a signal-threshold-crossing pixel may cause a 
scene-dependent artifact in the trailing black, and c) the row pad count to extend each contiguous region to account for 
potential variations in star signal levels. Essentially, if a row of a robust averaged (cosmic ray clean) FFI contains a pixel 
above the signal threshold at a column beyond the column threshold, then any row within the pad count of that row will 
be excluded from the trailing black fits. 

Only specific regions of an image are suitable for determining spatial coefficients. To systematize the selection of these 
regions the algorithm accepts specifications of a series of rectangular regions of interest (ROI) which can be thought of 
as building blocks for the complete modeled image region, containing pixel or collateral point attributes needed to 
assemble the modeled response vectors and design matrices. These are summarized in Table 2. 

Table 2.  Regions of interest containing data used for black level spatial fitting. The 'type' column simply identifies the 
source of response vector data, "ARP" means artifact removal pixels from target LC data, "Collateral" means summed 
collateral data, "FFI" means FFI pixel data, " RCLC" means target pixel data from reverse-clocked long cadences. The 
target table which specifies RCLC pixels was designed to monitor the FGS crosstalk, RBA and MPD artifacts. 

Region of Interest (ROI) min row max row min col. max col. type main use 
Leading ARP 7 1059 3 12 ARP 
Trailing ARP 7 1051 1115 1132 ARP 
Trailing ARP Undershoot 1052 1063 1113 1132 ARP 
Trailing Black Collateral 7 1059 1119 1132 Collateral 
Trailing FFI 7 1063 1113 1132 FFI 

• row dependence 
• FGS crosstalk 
• undershoot 

Masked Smear Collateral 7 18 13 1112 Collateral 
Virtual Smear Collateral 1047 1058 13 1112 Collateral 
Reverse-Clocked Long Cadence 7 1058 3 1130 RCLC 

• column dependence 
• SOLR 
• FGS crosstalk 

The complete model is assembled from a set of components. To systematize the construction of these components we 
identify represent distinct namable terms in the model which can be thought of as building blocks for the complete 
modeled design matrix, and associated indices for exclusion of potentially scene-dependent rows as a function of 
channel and all-zero columns in the design matrix. These are essentially the components of 
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XRC  described at the 
beginning of this section.  There are also "delta" components, which measure the difference between leading and trailing 
black or masked and virtual smear as detailed in the appendix. The design matrix is constructed with one row of 
information for each element of acquired data within each ROI model.   

Prior to performing the cadence-by-cadence fitting for a given channel, we fit the pixel-by-pixel average of all specified 
cadences to obtain the exponential time constant parameter for the row-dependent exponential term using a nonlinear 
model and then perform a linear fit on the mean of pixel values over selected long cadences to produce a set of mean 
coefficients. The resulting exponential time constant is used for all single-cadence fits for a given channel.  

Finally, we perform cadence-by-cadence fits to obtain linear coefficients for individual cadences. The algorithm consists 
of the following steps: 
• For each channel and for each long cadence: 

o Select response vector data from input raw long cadences using the ROI indices described above. 
o Determine the cadence-specific undershoot component of the design matrix, which we apply to only a 

small subset of the modeled pixels as described in the appendix. 
o Concatenate the constant part of design matrix with the undershoot component. 
o Perform a linear fit of scene-dependent-free data to obtain linear coefficients, and store results in output 

structures. 



 
 

 
 

 

• For each channel and for each FFI: 
o Select response vector data from input raw FFI using the ROI indices described above. 
o Determine the FFI-specific undershoot component of the design matrix, includes all modeled pixels. 
o Concatenate the constant part of design matrix with the undershoot component. 
o Perform linear fit of all data to obtain linear coefficients, and store results in output structures. 

3.2 Thermo-temporal fitting 

The spatial fit for each cadence produces a time-series of spatial coefficients. These coefficients exhibit a variety of 
behaviors, which are often, but not always, simple functions of time or temperature.  The purpose of the thermo-
temporal fitting algorithm is to fit the time series of each spatial coefficient, C, to the equation: 
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C(t,T ) = K0 +Ktt +KTT
where,
K0 is a constant
Kt  is the linear trend in C
KT  is the temperature coefficient of C
t is time
T is temperature.

 

In addition the algorithm provides the necessary statistics to evaluate whether the model fit is consistent with any of the 
possibilities Kt =0, KT=0 or both Kt and KT=0. This evaluation is based on the χ2 of the four fit combination with zero or 
nonzero Kt or KT.  

3.3 2D-black correction 

Not all the information from the spatial and thermo-temporal fits is typically required to adequately correct the data for 
the observed artifact-induced variations.  Some of the fit parameters are intended only for monitoring instrument 
performance. The 2D black correction only includes the following terms. 
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XRC − Z = X0 + fR + gC +WRC
F +WRC

P

where,
X0 is a constant
fR  is the row dependent part
gC  is the column dependent part
WRC

F  is the FGS frame crosstalk dependent part

WRC
P  is the FGS parallel crosstalk dependent part

 

The undershoot and the "delta" components are treated as static, and monitored.  In the event that time variability in 
these terms becomes significant enough in the future to impact science results, these terms could be added to the 
correction algorithm.  The equation for 
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XRC  is separable in terms of the row, column and crosstalk dependent parts, 
which enables the 2D corrections to be calculated from only the four vector terms, significantly shorting the processing 
time compared with an inseparable function. 

The algorithm is implemented as a function with arguments 1) a set of pixel rows, 2) a set of pixel columns, 3) a set of 
long cadence numbers, which specify time, and 4) a parameter that determines whether the row and column lists should 
be interpreted as defining a discrete set of points or a rectangular region. The model is assembled from the spatial and 
thermo-temporal fit coefficients based on a decision tree.  If the χ2 of the thermo-temporal fit indicates that the time 
series of the given spatial coefficient is not excluded from being a specific model at the 95% confidence level, then the 
spatial coefficient is determined from that model for all specified LC.  In the event that multiple models meet the 
criterion, the preference order for the models, from highest to lowest is: constant, constant+linear-thermal, 
constant+linear-trend-with-time, constant+linear thermal +linear-trend-with-time. If none of the cases meet this criterion, 
a comparison between the standard deviation of the differences between consecutive coefficients in the time series and 
the spatial coefficient fit errors in made.  If the standard deviation of the differences is more than 1.5 times larger than 
the standard errors in the individual coefficients, as determined in the least-squares spatial fits, then the coefficients are 
applied discretely, otherwise they are smoothed using a quadratic thermo-temporal fit over an adaptive time interval. 



 
 

 
 

 

3.4 Flagging 

The RBA and MPD share the same source signal, the high frequency amplifier oscillation described above, however 
RBA are somewhat simpler to identify.  The effects of RBA on pixel time series are generally larger and may be a 
greater risk to complicate the search for planet signatures.  For these reasons, we have developed separate algorithms for 
detection and flagging of each. 

Overall datasets are initially divided into subsets defined by a range of rows, a range of columns, and a range of long 
cadences. Both algorithms share the same general flow involving the following steps: 

Measurement: A measurement algorithm operates on each data subset to determine parameters indicating the presence of 
unusual bias level behavior.  The accumulation of these parameters over the entire data set provides input to detection 
algorithms. 

Detection: Detection algorithms compare the measured parameters with acceptability thresholds to detect unacceptable 
artifact behavior. The result is a map determining which parts of the full data set exceed the threshold criteria. 

Postprocessing:  Postprocessing algorithms accomplish two main tasks, a filter to clean spuriously flagged regions and a 
padding algorithm to add a buffer zone around areas with a high density of above-threshold flags.   The former prevents 
unnecessary flagging of data which is not at significant risk to interfere with planet search algorithms. The later accounts 
for the fact that we do not directly measure the science pixels but rather collateral data which is indicative of the science 
pixels, and thus there is some level of uncertainty in boundaries of affected locations. A final step in the postprocessing 
identifies rectangular boundaries in the padded flagged regions to be listed as suspect data flag objects to be carried 
forward as input to pipeline algorithms or as data products supplied to users. 

Severity evaluation:  A final algorithm assembles a set of statistics which characterize the severity of the flagged 
artifacts in the identified regions.  The algorithms operate on the data corresponding to the boundaries derived for the 
suspect data flag objects to produce a set of parameters describing the pixels and cadences being flagged by that object. 
The flags are paired with the severity parameters to form a list which represents the primary output of the flagging 
algorithms. The distinctions between the rolling band and moiré pattern algorithms are summarized in the Table 3 with 
further detail in the ensuing paragraphs. 

Table 3.  Flagging algorithm implementation comparison between rolling band flagging and moiré pattern drift flagging. 
Numerical values specified are nominal values for algorithm parameters. 

Item RBA MPD 
Measurement  • time-varying displacement in trailing black 

spatial fit residuals, not due to scene 
dependent artifacts 
• black transit search in trailing black 
residuals and smear differences 

• Amplitude of moiré pattern in 19 110-column 
subregions 
• frequency of moiré pattern 
• black transit search in trailing black residuals 
and smear differences 

Detection • displacement sigma vs. time > 0.02 
DN/pixel/read  
-or - 
• both fixed residual displacement and black 
transit > 0.02 DN/pixel/read  

• moiré pattern amplitude > 0.02 DN/pixel/read 
in subregions 
-or- 
•  black transit > 0.02 DN/pixel/read 

Postprocessing • filter out flag densities less than 5% in 10 
row by 39 LC region 
• pad around surviving flags  ±19 LC and 
±10 rows 
• package flagged regions into rectangular 
suspect data flags (SDF). 

• filter out flag densities less than 5% in 10 row 
by 39 LC region 
• pad around surviving flags  ±18 LC and ±10 
rows 
• package flagged regions into rectangular 
suspect data flags (SDF). 

Severity 
Evaluation 

calculate statistics of measured parameters 
within each SDF region. 
• 97.7 percentile & median displacement and 
fraction of exposure exceeding displacement 

calculate statistics of measured parameters 
within each SDF region. 
• number of traceable moiré spectral peaks 
detected 



 
 

 
 

 

threshold 
• 97.7 percentile & median noise and fraction 
of exposure exceeding noise threshold 
• 97.7 percentile & median bias variation and 
fraction of exposure exceeding bias variation 
threshold  
• number of >3 & >4 sigma transit-like 
features 
• total fraction of exposure exceeding 
combined thresholds 

• 97.7 percentile & median peak-to-peak moiré 
spatial amplitude and fraction of exposure 
exceeding amplitude threshold for each trace 
• median spatial frequency at peak amplitude 
for each trace 
•maximum temporal amplitude and 
corresponding frequency 
•  97.7 percentile & median noise and fraction 
of exposure exceeding noise threshold 
• 97.7 percentile & median bias variation and 
fraction of exposure exceeding bias variation 
threshold  
• number of >3 & >4 sigma transit-like features 
• total fraction of exposure exceeding 
combined thresholds 

 
RBA.  The signature of a rolling band is a time-varying displacement in trailing black spatial fit residuals, not due to 
scene dependent artifacts. The algorithm searches for these on a row-by-row basis for each channel. It also convolves a 
square wave transit kernel with these time series, as well as the column-by-column difference between masked and 
virtual smear time series for places where the black level variations exhibit transit-like signature.  We call these "black 
transits."  Clearly, when the collateral data exhibits transit-like time signatures, the data should be flagged, even if the 
typical variation is small. The convolution is equivalent to a least-squares fit to a transit signature at centered at each 
long cadence.  The fit transit depth is treated as a bias, and the uncertainty in the transit depth determines the noise level. 

MPD. The MPD flags require additional processing steps which include fast Fourier transforms of both the difference 
between a pair of FFIs and the difference between masked and virtual smear collateral data for each long cadence. The 
moiré pattern produces a detectable trace of high amplitudes with a continuous frequency signature as shown in figure 8. 
The FFI gives a spatial distribution of moiré amplitudes while the smear differences give variation in time.  By matching 
the smear frequencies in the FFIs to the nearest long cadence and then scaling the spatial distribution on a cadence-by-
cadence basis we can estimate the moiré pattern amplitude in any row at any time.  FFTs are also applied to 19 110- 
column-wide subregions at 55 column steps to measure the column dependence of the amplitude within a narrow band 
of the frequency determined from the full-width image.  Threshold-crossing of amplitudes from the windowed regions 
identifies flagged region boundaries. 

Often, as in figure 8, multiple frequency traces appear in the FFI difference row-by-row FFT or masked-virtual smear 
difference cadence-by-cadence FFT.  These must be resolved to correctly determine the frequency of the maximum 
moiré pattern amplitude.  A brief outline of the algorithm that performs this task includes the following steps. 

• Determine the 4 largest FFT amplitude peaks separated by some minimum frequency difference in each row of 
the FFIs and in each long cadence of the smear difference time series. 

• Determine the slope (Hz/row or Hz/long cadence) and intercept (Hz) of a line through each pair of peaks in the 
set which are separated by less than a specified maximum number of rows or long cadences. 

• Construct a 2D histogram of pair occurrences binned by slope and intercept.   
• Identify contiguous high-occupancy regions, or islands in the 2D histogram and establish a threshold level 

which defines the boundaries of the islands.  Each island corresponds to a unique frequency trace. 
• Reconstruct each frequency trace by assembling a set of line segments of specified length using the slopes and 

intercepts only from pairs of peaks which occupy the island. Each segment is centered at the mean frequency 
and mean row or long cadence of the pair.  

• Obtain frequency versus row or long cadence by averaging the segment frequency values where they intersect a 
given row or long cadence number. 

The final step determines the amplitudes associated with each detected frequency trace and column subwindow as a 
function of row or long cadence. The FFIs and smear differences give amplitude and frequency as a function of row, r, 
column subwindow, c, and time, t defined as: 
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index, i, references a specific matched frequency trace, and rS is the associated smear row. The final amplitude function, 
Ai, and frequency function, fi, for the ith frequency trace then follow from:  
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The maximum amplitude among the various traces is the flag discriminator.  The characteristics of all the detected 
frequency traces are summarized in the severity parameters for the flagged object. 

4. RESULTS  
We applied these algorithms to a cross-section of Kepler flight data. The following paragraphs describe the results of 
these prototype runs.  Table 4 identifies the flight data used to exercise each algorithm. The channels 2.1 and 12.1 were 
selected as "good channels", 6.2 and 20.2 exhibit worst case FGS crosstalk, and 9.2 and 17.2 exhibit worst-case MPD. 

Table 4.  Module Outputs  and time intervals used to exercise the various algorithms. Q0 lasted 10 days during 
commissioning from May 1-11, 2009, Q1 lasted 34 days from May 13-June 15, 2009. 

Item All Long Cadences Q0-Q1 All LC first 10 days 
of Q1 

Decimated set: every 10th LC 
for Q0; every 20th LC for Q2 

Fitting 2.1, 6.2, 9.2, 12.1, 17.2, 20.2 All All 
Correction 2.1, 6.2, 9.2, 12.1, 17.2, 20.2 None None 

RBA Flagging 2.1, 6.2, 9.2, 12.1, 17.2, 20.2 All None 
MPD Flagging 2.1, 6.2, 9.2, 12.1, 17.2, 20.2 All None 

4.1 Example fits 

Kepler readout channels exhibit a wide variety of black-level morphologies.  This section illustrates the model response 
fidelity using a few typical channels which span this range.  Figure 4 shows the raw trailing black collateral data for two 
channels, 12.1 and 20.2 along with the fit curves.  Some row regions were excluded from the fits because bright stars 
near the trailing black would have introduced unmodeled scene dependent artifacts that could bias the fit coefficients if 
not explicitly removed. 

 

 
Figure 4. Example comparison of fit curves (dark gray) and data (black) comparing trailing black collateral for 
channels 12.1 and 20.2 for one representative Q1 long cadence. The scales include an arbitrary constant offset. 
The row dependence of the black level is modeled well by an exponential term with time constant which varies 
from channel to channel plus a logarithmic term which is channel independent. The light gray points are data and 
residuals from regions excluded from the fit because of increase likelihood of scene dependent bias due to stars 
with pixel values >5000 DN read-1 within 400 columns of the trailing black in the excluded rows. The density of 
stars is higher in channel 20.2 in Q1, so the likelihood of stars very close to the trailing black is higher, leading to 
the evident higher number of obvious outliers in the excluded region in that channel. 



 
 

 
 

 

The variation in the low frequency row-dependent terms of the model is evident from the two examples above. The 
series of spiked rows, repeating 5 times, are collateral rows containing FGS crosstalk sensitive pixels.  The fit estimates 
offset values for each crosstalk-sensitive pixel from the combination of both the collateral row values representing the 
sum of 14 pixels and the individual ARPs. Undershoot coefficients represent filter coefficients for an additive term to 
each pixel based on a linear combination of the values of the previous 20 (not shown). Figure 5 shows typical time 
dependent behavior of low-frequency serial and FGS-frame coefficients. FGS-parallel coefficients are similar. 

    
Figure 5. Examples of behavior of spatial fit coefficients vs. time for channels 2.1 (a,b) and 20.2 (c,d). a) and c)  
show the behavior of the low frequency spatial coefficients. The bottom traces show the constant term which is the 
only coefficient which always varies discretely (i.e. cannot be smoothed). The middle and top trace are the log and 
exponential coefficients respectively. b) and d) show the FGS frame crosstalk coefficients. The scales are 
DN/pixel/read vs. time as measured by long cadence number.  An arbitrary offset has been added to each curve to 
provide visual separation. LDE temperature variation is shown in e) for Q0-Q1 only and f) for an entire year. The 
LDE temperatures in e) are derived from the mean of temperatures measured on all 5 LDE board pairs (ACQ & 
DRV) ,whereas f) shows only the ACQ 3 board temperature. Temperature and time were strongly correlated 
during Q0-Q1, but less so for the other quarters.  Spacecraft rolls at quarter boundaries, except Q0-Q1, produce 
step changes, and the failure of module 3 in Jan-2010 produced a large step in ACQ 3, which is used for module 3 
readout. Safe modes explain the remainder of the discontinuous features in f). Temperature variations are 
generally ~1°C within a quarter, and ~2°C over the year, excluding the step due to module failure. 

4.2 Effect of corrections on targets 

Calibrated Kepler pixels are subject to 3 separate effects of FGS crosstalk stemming from a) the 1-D black correction, b) 
the smear correction and c) the effects of any FGS-cross-talking pixels in the target aperture. In the current crosstalk-
unaware 1-D black correction, a robust polynomial fit is applied to the trailing black collateral data.  Even with a robust 
fitting algorithm there is likely to be some time varying bias introduced by cross talking pixels with nonzero weights on 
the fit coefficients and thereby on the correction of each science pixel. 89% of collateral rows are unaffected by FGS-
cross-talking pixels.  The introduced bias in a given row is applied to uniformly to all science pixels in that row. The 
crosstalk-unaware smear correction is a cadence-by-cadence column-dependent correction based on measurements from 
the masked and virtual smear collateral regions.  Each smear region is the sum of 12 rows. 57 % of collateral columns 
are unaffected by FGS-cross-talking pixels, and {23%, 3%, 12%, 5%} have {4, 3, 2, 1} modeled pixels in a given 
column. The introduced bias in a given column is applied to uniformly to all science pixels in that column. Both effects 
are reduced by the averaging and filtering afforded by the robust fits for the 1D black correction and the averaging over 
typically 24 rows for the smear correction.  

The FGS-cross-talking pixels in the science pixel region represent the primary motivation for developing a dynamic 2D 
black correction. Target apertures currently have no time-varying correction for cross-talking pixels.  82% of targets 



 
 

 
 

 

contain no FGS-cross-talking pixels. In this case the introduced bias in a given pixel applies to only science pixels in that 
target aperture.  The overall impact on the affected 18% of targets is substantially reduced by averaging over the whole 
aperture, and by the fact that the crosstalk is somewhat smaller and changes sign for some pixels, thereby producing 
further dilution by averaging. 

Figure 6 shows a histogram of the peak-to-peak dynamic 2D black corrections per target for Q1 where mean LDE 
temperature varied by 1°C over the full 34 day interval.  The figure shows both a worst case channel, which is highly 
susceptible to crosstalk, and the cumulative impact on all channels. The gray histogram shows the separated effect of 
FGS-crosstalk in the collateral regions.  The combined local pixels plus collateral (collateral only) affect 13% (5%) of 
targets by more than 0.02 DN/pixel/read in the worst case channel, while they affect only 4% (>1%) of all targets at this 
threshold level. The potential exists for a larger fraction targets to be affected by > 0.02 DN/pixel/read for full quarters, 
but because the temperature variation is large during this period, these values are likely to be typical of a quarter. It is 
noteworthy that the worst case average temperature coefficient for a target is ~0.6 DN/pixel/°C implying that a 0.03°C 
change in LDE temperature with the appropriate time signature would be required to produce the signature of an earth-
sized planet. Even then, the thermal excursion would need to repeat 3 times at regular intervals to produce a false 
positive. A more likely possibility is that, left uncorrected, the less predictably varying pixels, as shown in figure 5d, 
would reduce sensitivity to transits for limited periods in a small fraction of targets. Nevertheless, the increased risk of 
unanticipated consequences that these simple-to-remove artifacts could have on planet detection or other astrophysical 
applications for Kepler data warrants including this correction algorithm in the ongoing evaluation process for Kepler 
science pipeline enhancements. 

 a) worst case channel 20.2                   b) all channels 

 
Figure 6. Histograms of peak-to-peak dynamic 2D black corrections per science target for a) worst case channel 
20.2 and b) all channels during Q1. The contribution of collateral effects is shown in gray. 

 

4.3 Flagging effectiveness 

Two examples of rolling bands detected and flagged by the algorithm described above are illustrated in figure 7 for the 
result of combining quarters 0 and 1. The varying shaded areas represent the degree beyond threshold level that the data 
indicates a rolling band, the white regions are the padding around the offending regions and the black areas are 
unflagged. The figure shows the movement of the rolling bands as the flagged regions change with time.  The pattern in 
the signal over time at the top of figure 7.b is from a scene dependent region caused by a variable star near the trailing 
black region.  When a scene dependent region is flanked by a rolling band, the flagging algorithm automatically flags the 
scene dependent region as part of the rolling band.  If no rolling band is present, the flag remains scene dependent. The 
rolling band flags apply to all columns in a flagged row so we can define the rolling-band-free source coverage as the 
fraction of black cells in these 2D maps. Here we define "artifact-free source coverage" as the fraction of available field- 
of-view solid angle 
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× exposure time that is unaffected by a given artifact. In the test cases below the rolling-band-free 
source coverage is 60% and 78% for module outputs 9.2 and 17.2 respectively.  The rolling-band-free source coverage 
was 100% for all but 10 channels in the first 10 days of  Q1 data. 



 
 

 
 

 

 
Figure 7. Example of rolling band flagging results from channels a) 9.2 and b) 17.2 for combined Q0-Q1. Varying 
shaded areas represent the degree beyond threshold level that the data indicates a rolling band, white regions are 
the padding around the offending regions and black areas are unflagged. The scales are image row vs. time as 
measured in long cadence periods. 

 
Figure 8. Example of moiré pattern detection algorithm. a) Difference between 2 full frame images from channel 
17.2 during Q0. A rolling band is apparent in the row 700-850 range. b) Row-by-row FFT of image difference 
indicating 3 frequency traces. The 2 similar curves indicate a shift in frequency profile vs. row between the 2 FFIs. 
Localized frequency changes are the result of readout temperture reponse to bright sources (scene-dependent 
artifacts). c) The 3 frequency traces are detected by the filtering and detection algorithm, which is designed to 
avoid confusion when traces cross. Plots are derived from difference in 2 Channel 9.2 FFIs from Q2. 

Effectiveness of the moiré pattern detection algorithm is illustrated in figure 8.  The differenced FFI pair shown in figure 
8.a shows clear moiré pattern features after subjection to a row-by-row FFT as shown in figure 8.b.  The MPD detection 
and flagging algorithm identifies the distinct frequency traces in the images (figure 8.c) and determines the amplitudes at 
each frequency in each subwindow, as discussed in the algorithm description.  Similar algorithms generate traces for the 
difference between the masked and virtual smear for each long cadence to enable the frequency matching and amplitude 
scaling between full images and long cadences.  These scaled amplitudes are used in the threshold checking algorithm to 
flag data which is affected by moiré patterns.  

When applied to all the readout channels, the algorithm detected peak-to-peak moiré amplitudes ranging from 0 to 1.2 
DN/pixel/read over all possible moiré frequencies (0-1.5 MHz).  The moiré-pattern-drift-free source coverage was 100% 
for 65 module-outputs and 0% for 6 module-outputs during the first 10 days of quarter-1.  The source coverage in the 
remaining 13 readout channels varied from 17% to 86%. 



 
 

 
 

 

5. CONCLUSIONS AND FORWARD WORK  
The prototype algorithms described above successfully detect and correct or flag the pattern noise sources observed in 
the Kepler data stream. The following sections summarize the net impact of the image artifacts on the total Kepler field- 
of-view and outline forward plans for algorithm implementation, as well as mitigation of scene dependent artifacts.  

 
Figure 9. a) FGS cross-talk afflicted channels, with gray-level indicating the fraction of targets requiring 
corrections of  0.02 DN/pixel/read or greater. b) Channels exhibiting rolling bands are highlighted in white.  c) 
Channels exhibiting moiré pattern drift are highlighted in white. Channel layout matches Figure 1a. 

5.1 Summary 

Results based on the first month of Kepler science data collection from all channels are consistent with prelaunch 
expectations. While 17.4% of targets’ optimal apertures include modeled FGS clock intervals, only 3.7 % of targets 
require corrections of 0.02 DN pixel-1 read-1 or greater over the entire 34 day period, during which the temperature 
changed by 1°C. Rolling bands were evident on 10 channels during the first 10 days of this period, resulting in flagging 
of 3.0 % of the field-of-view. The rolling bands move with time, so the shorter interval gives a total flagged area 
representative of the affected size at any given instant. During the same interval moiré pattern afflicted 19 channels, 
resulting in flags over 12.7% of the field-of-view. This value is ~30% larger than prelaunch estimates and probably 
stems from the fact that in-flight temperatures are more stable, and therefore, the temperature profile during a single 
Kepler read is more repeatable. This would lead to greater coherence in the co-added frames, extending the moiré 
patterns further across the image rows. Figure 9 shows which Kepler channels are affected by the various pattern noise 
sources. 

5.2 Implementation in the Kepler Science Processing Pipeline 

Prior to launch, artifact mitigation was considered a top priority for Kepler pipeline implementation. This plan is 
undergoing a reprioritization based on in-flight observations of photometric performance and evaluation of the effects of 
other systematic errors and corrections. As a result, it is likely that these prototype algorithms will be delayed to a later 
pipeline development phase, assuming funding is available. Nevertheless, the completed prototype can be applied to any 
and all Kepler data to evaluate the impact of pattern noise on planet detection and measured parameter uncertainties. 

5.3 Plans for scene dependent artifacts 

The next step in artifact mitigation is to evaluate the impact of scene dependent artifacts on the field-of-view. Certain 
artifact features are temporarily distorted by the thermal transients introduced into the sensitive readout circuits by bright 
stars which saturate pixels. These stars produce a smear pattern extending over several rows in a given column.  
Specifically, the moiré pattern frequency changes abruptly and the amplitude increases sharply for many tens of pixels 
following these features. Pixels in the wake of these saturated segments are thereby subject to increased black-level 
variation. The affected regions are not directly detectable in the collateral regions and thus will require FFI images for 
detection. An algorithm which measures the Fourier peak amplitude in short spatial segments in these regions in 
differenced FFIs is expected to be effective at flagging the at-risk regions of MPD affected channels. In addition, 
variability of the bright stars changes the saturated segment's length producing a large dynamic range in the end pixels.  
Variation in these pixels produces variation in the downstream pixels in the same rows as a result of LDE undershoot.  
Since undershoot is only corrected in collected pixels, it would also be necessary to flag these areas based on FFI images 
and the known characteristics of bright variable stars in the field of view. In many cases it is possible to monitor the 



 
 

 
 

 

variability of the bright stars in the smear collateral regions on a continuous basis. Channels typically have only ~500 
saturated and near saturated pixels so even if these effects extend for 100 pixels downstream in the readout chain of each 
bright pixel, <5% of the field-of-view would be affected. Nevertheless, the need for automation in the detection of planet 
candidates in the >150000 Kepler targets supports the need to flag these at-risk regions. 

APPENDIX 

This appendix defines the terms in the spatial model. We are modeling several discrete components with only the leading 
(C≤12) and trailing black so it will be convenient to define the following discrete delta functions:  
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δXY =
1 if X = Y
0 if X ≠ Y
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

δC∈LB =
1 if C ≤12
0 if C >12
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

δR∈MS =
1 if R ≤ 20
0 if R > 20
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

δR∈VS =
1 if R ≥1045
0 if R <1045
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

δ{R ,C}∈US =
1 if {R,C}∈ undershoot ARPs
0 otherwise
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

δ{R ,C}∈i
F =

1 if {R,C}∈ pixels with FGS frame sequence number i 
0 otherwise
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
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δ{R ,C}∈i
P =

1 if {R,C}∈ pixels with FGS parallel sequence number i 
0 otherwise
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 

With these we can define the various modeled terms for LC fits: 
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g , where CLB  is the list of discretely modeled leading black columns

WRC
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WF )
i∈FGS−F
∑ , where FGS- F are modeled FGS frame clock states

WRC
P = δ{R ,C}∈i

P (C1,iFGS−P
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i∈FGS−P
∑ , where FGS- P are modeled FGS parallel clock states

URC =δ{R ,C}∈US (C0
U + CC − j

U

j=C −NUS
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∑ XRj ), where XRj  is a measured pixel signal value, and NUS  is the 

                                                          number of modeled undershoot columns.  
RCLCs are used to measure the column dependence of the black level using similar terms: 
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where CLB  is the list of discretely modeled leading black columns

WRC
F = δ{R ,C}∈i

F (C1,iFGS−F
WF +δR∈MSC2,iFGS−F

WF +δR∈VSC2,iFGS−F
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∑ , where FGS- F are modeled FGS frame clock states
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P (C1,iFGS−P
WP +δR∈MSC2,iFGS−P

WP +δR∈VSC2,iFGS−P
WP )

i∈FGS−P
∑ , where FGS- P are modeled FGS parallel clock states

 Cadence-by-cadence fits of the masked-virtual smear differences employ this RCLC pixel model to monitor unexpected 
changes in the low-spatial-frequency column dependence of the black level and FGS crosstalk variation with column.  
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